3-fold singularity and 5d $\mathcal{N}=1$ SCFT

Dan Xie

Center for Mathematical Sciences and Applications, Harvard University Based on D.Xie and S.T Yau, To appear.

September 21, 2016

Motivation

- Classify $5 \mathrm{~d} \mathcal{N}=1$ SCFT using M theory on 3-fold singularities.

Motivation

- Classify $5 \mathrm{~d} \mathcal{N}=1$ SCFT using M theory on 3-fold singularities.
- Understand properties of those SCFTs such as the moduli space of vacua, global symmetry, duality, etc. Many of those properties are manifest from the singularity point of view.

Generality of $5 \mathrm{~d} \mathcal{N}=1$ SCFT

- The bosonic symmetry group is the 5 d conformal group $S O(2,5)$, $S U(2)_{R}$ symmetry, and possibly global symmetry group G.

Generality of $5 \mathrm{~d} \mathcal{N}=1$ SCFT

- The bosonic symmetry group is the 5 d conformal group $S O(2,5)$, $S U(2)_{R}$ symmetry, and possibly global symmetry group G.
- A long supermultiplet of $5 \mathrm{~d} \mathcal{N}=1$ superconformal algebra is labeled as $\mid \Delta, j_{1}, j_{2}, R>$. Short multiplets are classified in (Cordorva, Dumitrescu, Intriligator 16). An important class of short multiplets are $D_{R}=[\Delta, 0,0, R]$ with $\Delta=\frac{3}{2} R$.

Generality of $5 \mathrm{~d} \mathcal{N}=1$ SCFT

- The bosonic symmetry group is the 5 d conformal group $S O(2,5)$, $S U(2)_{R}$ symmetry, and possibly global symmetry group G.
- A long supermultiplet of $5 \mathrm{~d} \mathcal{N}=1$ superconformal algebra is labeled as $\mid \Delta, j_{1}, j_{2}, R>$. Short multiplets are classified in (Cordorva, Dumitrescu, Intriligator 16). An important class of short multiplets are $D_{R}=[\Delta, 0,0, R]$ with $\Delta=\frac{3}{2} R$.
- SUSY preserving deformations are classified: the only relevant deformation is the mass deformation which is associated with the operator D_{2}, and there is no exact marginal deformations. Under certain mass deformation, the IR theory might admit a non-abelian gauge theory description.

There is another type of SUSY preserving deformation, namely one can turn on expectation value of some of the operators, and we might have continuous moduli space of vacua:

There is another type of SUSY preserving deformation, namely one can turn on expectation value of some of the operators, and we might have continuous moduli space of vacua:

- The Higgs branch which is parameterized by the operators D_{R}. The interesting question is to determine the full chiral ring relation for D_{R}.

There is another type of SUSY preserving deformation, namely one can turn on expectation value of some of the operators, and we might have continuous moduli space of vacua:

- The Higgs branch which is parameterized by the operators D_{R}. The interesting question is to determine the full chiral ring relation for D_{R}.
- The Coulomb branch. Notice that there is no R symmetry acting on this branch and therefore we can not parameterize this branch using protected operators. At generic point, the IR theory is an abelian gauge theory plus possibly a terminal theory, and the interesting question is to determine the prepotential which is just cubic in the IR gauge fields. There are various type of massive BPS states: electric charged particles, instaton particles, tensile strings, etc.

There is another type of SUSY preserving deformation, namely one can turn on expectation value of some of the operators, and we might have continuous moduli space of vacua:

- The Higgs branch which is parameterized by the operators D_{R}. The interesting question is to determine the full chiral ring relation for D_{R}.
- The Coulomb branch. Notice that there is no R symmetry acting on this branch and therefore we can not parameterize this branch using protected operators. At generic point, the IR theory is an abelian gauge theory plus possibly a terminal theory, and the interesting question is to determine the prepotential which is just cubic in the IR gauge fields. There are various type of massive BPS states: electric charged particles, instaton particles, tensile strings, etc.
- One can also have mixed branch.

Constructing models

There are three important ways of engineering $5 \mathrm{~d} \mathcal{N}=1$ SCFT:

- The UV limit of non-abelian gauge theory. Example: SU(2) with $N_{f} \leq 7$, We have $E_{N_{f}+1}$ type SCFT (Seiberg 96).

Constructing models

There are three important ways of engineering $5 \mathrm{~d} \mathcal{N}=1$ SCFT:

- The UV limit of non-abelian gauge theory. Example: SU(2) with $N_{f} \leq 7$, We have $E_{N_{f}+1}$ type SCFT (Seiberg 96).
- $(p, q) 5$ brane web construction using type IIB sting theory (Aharony, Hanany, Kol, 97).

Constructing models

There are three important ways of engineering $5 \mathrm{~d} \mathcal{N}=1$ SCFT:

- The UV limit of non-abelian gauge theory. Example: SU(2) with $N_{f} \leq 7$, We have $E_{N_{f}+1}$ type SCFT (Seiberg 96).
- $(p, q) 5$ brane web construction using type IIB sting theory (Aharony, Hanany, Kol, 97).
- M theory on 3-fold singularities. Here 3-fold singularity is formed by contracting a divisor: We get massless particles from M2 brane wrapping vanishing 2 cycles inside the divisor, and massless strings from M5 brane wrapping on vanishing 4-cycles. It is argued that the limit is an interacting local quantum field theory (Witten 96, Seiberg 96, Seiberg, Morrison, 96).

Recently we have initiated a program of classifying $4 \mathrm{~d} \mathcal{N}=2$ SCFT using 3-fold singularities (DX, Yau 15). In that context, the Coulomb branch is related to deformation of singularity and the homology of the deformed manifold is concentrated at H^{3}.

Recently we have initiated a program of classifying $4 \mathrm{~d} \mathcal{N}=2$ SCFT using 3 -fold singularities (DX, Yau 15). In that context, the Coulomb branch is related to deformation of singularity and the homology of the deformed manifold is concentrated at H^{3}.

Now for $5 \mathrm{~d} \mathcal{N}=1$ SCFT engineered using M theory on 3-fold singularities, we need to consider resolution to describe the Coulomb branch!

Recently we have initiated a program of classifying $4 \mathrm{~d} \mathcal{N}=2$ SCFT using 3 -fold singularities (DX, Yau 15). In that context, the Coulomb branch is related to deformation of singularity and the homology of the deformed manifold is concentrated at H^{3}.

Now for $5 \mathrm{~d} \mathcal{N}=1$ SCFT engineered using M theory on 3-fold singularities, we need to consider resolution to describe the Coulomb branch!

Our philosophy is that a singularity is the definition of a SCFT, and the first question we would like to answer is: what kind of singularity is needed to define a $5 \mathrm{~d} \mathcal{N}=1 \mathrm{SCFT}$?

Some clues:

- In studying Calabi-Yau degeneration, only a special kind of singularity called canonical singularity appears.

Some clues:

- In studying Calabi-Yau degeneration, only a special kind of singularity called canonical singularity appears.
- 6d $(2,0)$ theory is classified by type IIB string theory on 2 dimensional canonical singularity (Witten 95):

$$
\begin{array}{ll}
A_{n}: & x^{2}+y^{2}+z^{n}=0 \tag{1}\\
D_{n}: & x^{2}+y^{n-1}+z y^{2}=0 \\
E_{6}: & x^{2}+y^{3}+z^{4}=0 \\
E_{7}: & x^{2}+y^{3}+y z^{3}=0 \\
E_{8}: & x^{2}+y^{3}+z^{5}=0
\end{array}
$$

Some clues:

- In studying Calabi-Yau degeneration, only a special kind of singularity called canonical singularity appears.
- 6d $(2,0)$ theory is classified by type IIB string theory on 2 dimensional canonical singularity (Witten 95):

$$
\begin{array}{ll}
A_{n}: & x^{2}+y^{2}+z^{n}=0 \tag{1}\\
D_{n}: & x^{2}+y^{n-1}+z y^{2}=0 \\
E_{6}: & x^{2}+y^{3}+z^{4}=0 \\
E_{7}: & x^{2}+y^{3}+y z^{3}=0 \\
E_{8}: & x^{2}+y^{3}+z^{5}=0
\end{array}
$$

- $4 \mathrm{~d} \mathcal{N}=2$ SCFT is also classified by 3 dimensional canonical singularity (DX, ST Yau 15)!

We now conjecture that: Every 3 dimensional canonical singularity defines a $5 \mathrm{~d} \mathcal{N}=1 \mathrm{SCFT}$!

Definition

A canonical singularity X is defined as follows (Reid 81):

- The Weyl divisor K_{X} is Q-Cartier, i.e. there is an integer r such that $r K_{X}$ is a Cartier divisor.
- For any resolution of singularity $f: Y \rightarrow X$, with exceptional divisors $E_{i} \in Y$, we have

$$
\begin{equation*}
K_{Y}=f^{*} K_{X}+\sum_{i} a_{i} E_{i} \tag{2}
\end{equation*}
$$

with $a_{i} \geq 0$.
r is called index of the singularity. If $a_{i}>0$ for all exceptional divisors, it is called terminal singularity.

Some important properties about canonical singularity:

- There exists a cyclic cover of the index r canonical singularity by index 1 singularity. The index 1 singularity is called rational Gorenstein singularity.

Some important properties about canonical singularity:

- There exists a cyclic cover of the index r canonical singularity by index 1 singularity. The index 1 singularity is called rational Gorenstein singularity.
- There exists a crepant partial resolution $f: Y \rightarrow X$, i.e.

$$
\begin{equation*}
K_{Y}=f^{*} K_{X} \tag{3}
\end{equation*}
$$

such that Y is Q -factorial and has only terminal singularity. Such resolutions are not unique, but the number of crepant divisor is the same!

Some important properties about canonical singularity:

- There exists a cyclic cover of the index r canonical singularity by index 1 singularity. The index 1 singularity is called rational Gorenstein singularity.
- There exists a crepant partial resolution $f: Y \rightarrow X$, i.e.

$$
\begin{equation*}
K_{Y}=f^{*} K_{X} \tag{3}
\end{equation*}
$$

such that Y is Q -factorial and has only terminal singularity. Such resolutions are not unique, but the number of crepant divisor is the same!

- The terminal singularity is classified by following isolated cDV singularity:

$$
\begin{equation*}
f(x, y, z)+\operatorname{tg}(x, y, z, t)=0 \tag{4}
\end{equation*}
$$

here $f(x, y, z)$ is the 2-dimensional $A D E$ singularity.

Classification and some examples

For rational Gorenstein singularity, the classification is reduced to the classification of 2d singularity using the hyperplane section, and the classification is labeled by a non-negative integer k. We also have the following familiar ones

Classification and some examples

For rational Gorenstein singularity, the classification is reduced to the classification of 2d singularity using the hyperplane section, and the classification is labeled by a non-negative integer k. We also have the following familiar ones

- Quotient singularity C^{3} / G, with $G \in S L(3)$.

Classification and some examples

For rational Gorenstein singularity, the classification is reduced to the classification of 2d singularity using the hyperplane section, and the classification is labeled by a non-negative integer k. We also have the following familiar ones

- Quotient singularity C^{3} / G, with $G \in S L(3)$.
- Toric Gorenstein singularity.

Classification and some examples

For rational Gorenstein singularity, the classification is reduced to the classification of 2d singularity using the hyperplane section, and the classification is labeled by a non-negative integer k. We also have the following familiar ones

- Quotient singularity C^{3} / G, with $G \in S L(3)$.
- Toric Gorenstein singularity.
- Quasi-homogeneous Hypersurface singularity $f\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ satisfying the condition

$$
\begin{equation*}
f\left(\lambda^{q_{i}} z_{i}\right)=\lambda f\left(z_{i}\right), \quad \sum q_{i}>1 \tag{5}
\end{equation*}
$$

Toric Gorenstein singularity

Let's fix a 3 dimensional lattice $N=Z^{3}$ and its dual lattice M. 3-d Toric singularity is defined by a convex cone σ which is generated by finite number of lattice vectors $<v_{1}, \ldots, v_{s}>$ such that

$$
\begin{equation*}
\sigma=\left\{r_{1} v_{1}+\ldots+r_{s} v_{s} ; \quad r_{i} \geq 0\right\} \tag{6}
\end{equation*}
$$

Toric Gorenstein singularity

Let's fix a 3 dimensional lattice $N=Z^{3}$ and its dual lattice M. 3-d Toric singularity is defined by a convex cone σ which is generated by finite number of lattice vectors $<v_{1}, \ldots, v_{s}>$ such that

$$
\begin{equation*}
\sigma=\left\{r_{1} v_{1}+\ldots+r_{s} v_{s} ; \quad r_{i} \geq 0\right\} \tag{6}
\end{equation*}
$$

For Gorenstein Toric singularity, one can find a coordinate system such that all the generators are on $z=1$ hyperplane. The cone cut out a two dimensional convex polygon:

- One can define a dual cone σ^{\vee} such that the toric variety is defined by $\operatorname{Spec}\left(\sigma^{\vee} \cap M\right)$.
- One can define a dual cone σ^{\vee} such that the toric variety is defined by $\operatorname{Spec}\left(\sigma^{\vee} \cap M\right)$.
- Orbit-Cone correspondence: each k dimensional cone gives a $3-k$ dimensional torus invariant orbits: a two dimensional cone gives a curve, a one dimensional cone gives a divisor, etc. From polygon point of view, a lattice point defines a divisor and an edge defines a curve.
- One can define a dual cone σ^{\vee} such that the toric variety is defined by $\operatorname{Spec}\left(\sigma^{\vee} \cap M\right)$.
- Orbit-Cone correspondence: each k dimensional cone gives a $3-k$ dimensional torus invariant orbits: a two dimensional cone gives a curve, a one dimensional cone gives a divisor, etc. From polygon point of view, a lattice point defines a divisor and an edge defines a curve.
- They are all canonical singularities.
- One can define a dual cone σ^{\vee} such that the toric variety is defined by $\operatorname{Spec}\left(\sigma^{\vee} \cap M\right)$.
- Orbit-Cone correspondence: each k dimensional cone gives a $3-k$ dimensional torus invariant orbits: a two dimensional cone gives a curve, a one dimensional cone gives a divisor, etc. From polygon point of view, a lattice point defines a divisor and an edge defines a curve.
- They are all canonical singularities.
- The Q factorial terminal singularity is smooth point.

Singular locus and global symmetry

A cone is smooth if the generators form a part of Z basis of N. An affine toric variety is singular, and the singular locus can be easily found from the polygon.

- Each edge with more than one dots are singular, and actually there is a A_{n} surface singularity over this one dimensional local, here n is the number of internal points.

Singular locus and global symmetry

A cone is smooth if the generators form a part of Z basis of N. An affine toric variety is singular, and the singular locus can be easily found from the polygon.

- Each edge with more than one dots are singular, and actually there is a A_{n} surface singularity over this one dimensional local, here n is the number of internal points.
- Now the crucial point is that M theory on 2d $A D E$ singularity gives a $A D E$ gauge symmetry, and the base of the curve is noncompact so there is a $A D E$ flavor symmetry. The symmetry might be enhanced again!

Singular locus and global symmetry

A cone is smooth if the generators form a part of Z basis of N. An affine toric variety is singular, and the singular locus can be easily found from the polygon.

- Each edge with more than one dots are singular, and actually there is a A_{n} surface singularity over this one dimensional local, here n is the number of internal points.
- Now the crucial point is that M theory on 2d $A D E$ singularity gives a $A D E$ gauge symmetry, and the base of the curve is noncompact so there is a $A D E$ flavor symmetry. The symmetry might be enhanced again!
- The rank of the class group is $d-3$, where d is the number of lattice points on the boundary.

Crepant resolution and Coulomb branch

The crpepant resolution is achieved by finding the unimodular lattice triangulation of the polygon (triangles with only three vertices and no lattice points inside or on the boundary). So the dimension of the Coulomb branch is equal to the number of internal lattice points of the polygon.

- Many different resolutions, but the resolution is not unique and they are related by the flop: many chambers.

Crepant resolution and Coulomb branch

The crpepant resolution is achieved by finding the unimodular lattice triangulation of the polygon (triangles with only three vertices and no lattice points inside or on the boundary). So the dimension of the Coulomb branch is equal to the number of internal lattice points of the polygon.

- Many different resolutions, but the resolution is not unique and they are related by the flop: many chambers.
- Each internal vertex in the polygon gives us an exceptional divisor. The number of exceptional divisor is unique and is independent of the crepant resolution.

Dual graph and (p, q) brane web

Let's take a crepant resolution of the convex polygon, and draw the dual diagram: draw a vertex inside triangle and three legs perpendicular to the edges, and we get a web which is nothing but the (p, q) brane web. We have the following simple map:

Dual graph and (p, q) brane web

Let's take a crepant resolution of the convex polygon, and draw the dual diagram: draw a vertex inside triangle and three legs perpendicular to the edges, and we get a web which is nothing but the (p, q) brane web. We have the following simple map:

- The face of (p, q) web denote a divisor: we get a string from M theory using M5 brane, and we get a string from D3 brane wrapping on this face (Aharony, Hanany, Kol, 97) .

Dual graph and (p, q) brane web

Let's take a crepant resolution of the convex polygon, and draw the dual diagram: draw a vertex inside triangle and three legs perpendicular to the edges, and we get a web which is nothing but the (p, q) brane web. We have the following simple map:

- The face of (p, q) web denote a divisor: we get a string from M theory using M5 brane, and we get a string from D3 brane wrapping on this face (Aharony, Hanany, Kol, 97) .
- The edge of (p, q) web gives a curve: we can get string ending on two edges of (p, q) web, and this gives the BPS particles: W bosons, instanton particles, etc.

Dual graph and (p, q) brane web

Let's take a crepant resolution of the convex polygon, and draw the dual diagram: draw a vertex inside triangle and three legs perpendicular to the edges, and we get a web which is nothing but the (p, q) brane web. We have the following simple map:

- The face of (p, q) web denote a divisor: we get a string from M theory using M5 brane, and we get a string from D3 brane wrapping on this face (Aharony, Hanany, Kol, 97) .
- The edge of (p, q) web gives a curve: we can get string ending on two edges of (p, q) web, and this gives the BPS particles: W bosons, instanton particles, etc.
- The number of semi-infinite edges minus three is the number of mass parameters.

Matter: theory without the Coulomb branch

If the polygon does not contain internal lattice points, we might call it a matter system:

Matter: theory without the Coulomb branch

If the polygon does not contain internal lattice points, we might call it a matter system:

These are expected to be the bi-fundamentals of $S U\left(n_{1}\right) \times S U\left(n_{2}\right) \times U(1)$. The last one has flavor symmetry $S U(2) \times S U(2) \times S U(2)$ and is expected to represent $S U(2)$ tri-fundamental.

Partial resolution and non-abelian gauge theory

We can do the partial resolution by doing a refinement of the convex polygon: We can divide the polygon into several small polygons. The gluing process can be interpreted as gauging non-abelian flavor symmetry of various small polygons:

Partial resolution and non-abelian gauge theory

We can do the partial resolution by doing a refinement of the convex polygon: We can divide the polygon into several small polygons. The gluing process can be interpreted as gauging non-abelian flavor symmetry of various small polygons:

SU(2)

SU(2)-[5]

[2]-SU(2)-SU(2)-[2

[2]-SU(2)-SU(3)-SU(3)-SU(3)-SU(3)-SU(2)-[2]

Enhanced flavor symmetry from gauge theory

There is a nice formula for the enhanced flavor symmetry (Tachikawa 2015, Yonekura 2015) : for a linear quiver with $\operatorname{SU}(N)$ gauge group, prepare two additional Dynkin diagram Γ^{+}and Γ^{-}with the same shape as the quiver gauge theory; Next color a node i in Γ^{+}if the following conditions are satisfied:

$$
\begin{equation*}
2 k_{i}=2 N_{c}-N_{f} . \tag{7}
\end{equation*}
$$

Here k_{i} is the Chern-Simons level, and N_{f} is the fundamental flavor. Similarly, color a node in Γ^{-}if the following conditions are satisfied

$$
\begin{equation*}
-2 k_{i}=2 N_{c}-N_{f} . \tag{8}
\end{equation*}
$$

The final flavor symmetry can be read from the above two colored Dynkin diagrams (replace $S U(2)-3$ by $S U(1)-S U(2)-S U(3)$).

Fun with building gauge theories

Now we could play with those polygons and build many interesting theories:

Duality

Now there are many different kinds of partial resolution, and these can be understood as the duality of 5d gauge theory: different gauge theories flow to the same $5 \mathrm{~d} N=1$ SCFT in the UV limit:

Duality

Now there are many different kinds of partial resolution, and these can be understood as the duality of 5d gauge theory: different gauge theories flow to the same $5 \mathrm{~d} N=1$ SCFT in the UV limit:

Many interesting new dualities.

Higgs branch

The Higgs branch is related to deformation theory of toric singularity. For isolated singularities, different branches corresponding to different Minkowski summand of the same lattice polygon.

5d theory on circle

If we compactify $5 d$ theory on a circle, we get a $4 d \mathcal{N}=2$ theory in the IR. An important question is to write down the Seiberg-Witten curve of these theories. Again, there is an easy way to write down those curves using the mirror symmetry (Hori, Vafa, 2002). The rule is actually the same as the one given in (Aharony, Hanany, Kol, 97).

Other singularities

We can extend the computation to the quotient singularities and the hypersurface singularities: we can compute the dimension of Coulomb branch and the dimension of mass parameters, flavor symmetry, etc. These give many new $5 \mathrm{~d} \mathcal{N}=1$ SCFTs. Some properties of field theory can be found as follows:

- The Coulomb branch is described by crepant resolution, and the Higgs branch is described by deformation.
- The number of mass parameters is equal to the rank of local class group.
- The dimension of Coulomb branch can be computed by counting the number of crepant divisors.
- The flavor symmetry can be found by looking at one dimensional singular locus and its singular type.

Singularities give us many new interesting $\mathcal{N}=1$ SCFT. Those theories deserve further study. Here are some interesting further questions

- We found that the ending point of resolution is not often the smooth point, but some Q-factorial terminal singularities. It is interesting to study further those interacting SCFT without the Coulomb branch.
- Further study of duality, i.e. checking duality using superconformal index (HC Kim, S.S Kim, Kimyeong Lee 12).
- BPS spectrum.
- Connection to $4 \mathrm{~d} \mathcal{N}=2$ SCFT.
- . . .

